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Abstract
A directional photon-assisted resonant chiral tunneling through a bilayer graphene barrier is
considered. An external electromagnetic field applied to the barrier switches the transparency T
in the longitudinal direction from its steady state value T = 0 to the ideal T = 1 at no energy
costs. The switch happens because the ac field affects the phase correlation between the
electrons and holes inside the graphene barrier, changing the whole angular dependence of the
chiral tunneling (directional photoelectric effect). The suggested phenomena can be
implemented in relevant experiments and in various sub-millimeter and far-infrared optical
electronic devices.

1. Introduction

The electromagnetic properties of bilayer graphene [1–4] offer
enormous opportunities for scientific research and various
nanoelectronic applications. They emerge in the spectroscopy
of bound and scattering states, in the photon-assisted chiral
tunneling and in direct probing of strong correlation effects.
Potential applications include electromagnetic field (EF)
spectral analyzers, receivers, detectors and sensors [5]. The
crystal lattice of the bilayer graphene [1–4] consists of four
equivalent sublattices of carbon atoms while the charge carriers
behave there as massive ‘chiral fermions’ [1, 3, 4]. The
chiral fermions (CF) in bilayer graphene have a finite mass
me,h, like conventional electrons (e) and holes (h) in metals
and semiconductors [1, 3, 4]. The chirality relates the
particles to certain sublattices and is responsible for various
unconventional dc electronic and magnetic properties of the
bilayer graphene [1–3]. In contrast to an ordinary tunneling
through a conventional potential barrier, during the chiral
tunneling (CT) an incoming electron is converted into a hole
moving inside the graphene barrier in a reverse direction, as
indicated in figure 1(a) (the Klein paradox [7, 8]). This yields
a finite transparency T �= 0 for incident electrons with energies
E below the barrier E < U0 (U0 is the barrier height energy)
occurring [1] at finite particle incidence angles φ �= 0. On
the other hand, the steady state chiral tunneling is blocked
(T = 0) in the longitudinal direction φ = 0. The angle-
dependent transparency makes the chiral tunneling attractive
for various nanoelectronic applications [5, 6]. The potential
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Figure 1. (a) Potential barrier in bilayer graphene controlled by the
gate voltage VG and exposed to the external electromagnetic field,
EF. The scattering states inside the barrier originate from conversion
of an electron (e) to a hole (h). (b) Two coupled hexagonal lattices
with non-equivalent carbon atomic sites A, B, Ã, and B̃ in the bottom
and top layers respectively. Two possible set-ups (c) and (d) of the
bilayer graphene junction. The external ac field induces the
directional photon-assisted resonant tunneling.

barrier in graphene can either be induced by the gate voltage
VG from a Si gate slab or can be formed by three overlapping
graphene sheets, as shown in figures 1(c) and (d). According
to [1], the dc gate voltage VG shifts the graphene barrier
height, which controls the chiral tunneling. That process
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implies the wavefunction phases of electrons and holes being
interconnected with each other in the graphene. The phase
correlations during the chiral tunneling can also be directly
tuned by applying an external ac field. Control of the electron
wavefunction phase by an ac field has not been accomplished
yet and is the subject of this paper. The electronic properties
are described by a spinor wavefunction �̂ , whose components
depend on the angle φ between the electron momentum p and
the x axis (see figure 1). A similar spinor description had
formerly been used for Dirac fermions [7] and for relativistic
quasiparticles in single-layer graphene [1, 9].

This paper is devoted to electromagnetic properties of
a bilayer graphene junction shown in figure 1. One may
expect that the differential tunneling conductance σ(φ, Vsd) of
‘clean’ samples depends on the angle φ between the electric
current j and the x direction (see figure 1). The whole
shape of σ(φ) versus the source–drain voltage Vsd is very
sensitive to properties of the bilayer graphene barrier. We
begin with computing the steady state σ(φ, Vsd) curves for
a graphene barrier biased by Vsd. The steady state results
are then utilized for studying the ac properties. When an
external electromagnetic field (EF) is applied, it strongly
affects the directional diagram of σ(φ, Vsd). In particular
we will see that the external electromagnetic field induces a
finite conductance in the straightforward direction (φ = 0),
which had been blocked in the steady state. That happens
because the electromagnetic field affects the electron–hole
phase correlations inside the graphene barrier directly. In the
steady state, when the ac field is off, the electric current is fully
suppressed at Vsd < U0 (for a typical gate voltage VG = 1 V
and SiO2 thickness d = 300 nm one finds [9] U0 = 2 meV).

2. Photon-assisted chiral tunneling

Here we examine the influence of an electromagnetic field on
chiral tunneling and discuss the intrinsic noise. For studying
the non-stationary electric current across the bilayer graphene
junction we implement the methods of [10–12]. The graphene
bilayer is modeled as two coupled hexagonal lattices consisting
of four non-equivalent sites A, B and Ã, B̃ in the bottom and
top layers respectively (see figure 1(a)). The chiral fermion
Hamiltonian operates in the space of the two-component
wavefunctions �̂. When the junction is exposed to an external
electromagnetic field, the main part of the Hamiltonian is

Ĥ = −h̄2
(
π2

−σ̂+ + π2
+σ̂−

)
/2m + U(x), (1)

where π± = (k −eAx(t)/h̄)± i(q −eAy(t)/h̄), σ̂± = σ̂x ± σ̂y ,
σ̂i are the Pauli matrices, i = {x, y, z}, the effective mass m
is expressed via the coupling strength γÃB between Ã and B
as m = γÃB/2v2 = 0.054 me, where v = (

√
3/2)aγAB,

a = 0.246 nm is the lattice constant, γAB ≈ 0.4 eV, Ax,y(t) are
the corresponding components of the time-dependent vector
potential A(t) and U(x) is the graphene barrier potential
controlled by the gate voltage VG. Equation (1) describes
interlayer coupling via a dimer state formed by pairs of carbon
AB̃ atoms located in the bottom and top layers, respectively, as
shown in figure 1(b). A weak direct AB̃ coupling and a small

interaction due to the bottom and top layer asymmetry (which
opens a minigap in the electron spectrum [3]) are both hereafter
neglected.

For graphene junctions having finite dimensions, the
motion of chiral fermions is quantized. The quantization
imposes additional constraints on the directional tunneling
diagram. Permitted values of the angle φ̃n inside the graphene
barrier are obtained from boundary conditions along the y
direction, so the y component of the electron momentum
p = (h̄k, h̄q) is quantized as q̃n = nπ/W (where W is
the barrier width), which gives φ̃n = arctan[nπ/(k ′

εW )],
where k ′

ε =
√

2m/h̄2√|ε − U0| − |ε|(1 − cos 2φ)/2. The last
formula also means that q̃n depends on the electron energy
variable ε. The electric current density j = I (Vsd)/W (I is the
electric current, Vsd is the bias voltage and W is the graphene
stripe width) between electrodes 1 and 3 is computed as j =
2πe

∫
dε χε[G K

3 (ε) − G K
1 (ε)] where we introduced the factor

χε. If electrodes 1 and 3 are made of a monolayer graphene
or are metallic, then χε = vF N(0), where vF and N(0) are
corresponding Fermi velocity and the electron density of states
at the Fermi level. However, if electrodes 1 and 3 are made
of the bilayer graphene itself, which case we inspect in detail
below, then χε = vε N(ε), where vε = h̄|k|/m = √

2|ε|/m
and N(ε) = ∑

k θ(ε− Ek)·m/(π h̄2) are the energy-dependent
velocity and the two-dimensional electron density of states in
the bilayer graphene, Ek is the kth electron energy level in the
graphene barrier stripe, G K

r (ε) = −i
∑

p |tp|2eiqyeikD(2n p −
1)δ(ε − εp + δr,3eVsd) is the Keldysh Green function [11], r
is the electrode index, δr,3 is the Kronecker symbol and n p is
the distribution function of electrons with momentum p. A
straightforward calculation using the methods of [10–12] gives

j = (π/2)e
∫

dε χε

∑

p

∣
∣tp

∣
∣2 [(2n p − 1)

· δ(ε − εp + eV ) − (2n p − 1) · δ(ε − εp)]
= πe

∫
dε χε |tε|2 (nε−eV − nε). (2)

Taking for simplicity N(ε) = m/(π h̄2) from equation (2) one
finds the zero temperature steady state conductance as

G0 = e2

h̄2
T W

√
2meVsd = 2e2

h
T Nch (Vsd) (3)

where T = |teVsd |2 is the graphene barrier transparency.
In equation (3) we introduced the voltage-dependent di-
mensionless number of conducting channels Nch(Vsd) =
πW

√
2meVsd. The dependence Nch versus Vsd stems from

the energy dependence of the electron velocity in the bilayer
graphene vε. Equation (3) coincides with the well-known
Landauer formula with the number of conducting channels
Nch. The calculation results will be convenient to normalize
to an auxiliary conductivity defined as σ̃0 = W−1 · G0(Vsd =
U0/e) = (2e2/h)π

√
2mU0 (where we used T � 1 at Vsd =

U0/e, U0 being the graphene barrier height). The transmission
amplitude tε across the voltage biased junction is obtained
within a simple model which represents the chiral fermion
wavefunctions via Airy functions. The Hamiltonian (1) yields

2
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a gapless semiconductor with massive chiral electrons and
holes having a finite mass m. Let us consider tunneling of
those fermions with the energy E incident on the barrier under
the angle φ. Since the potential barrier is formed in the
longitudinal direction, the y component h̄q of the momentum
p is conserved while the x component h̄k is not. The trial
chiral fermion wavefunction takes a piecewise form [1]. The
chirality has no significance for particles propagating above
the barrier E > U0. An analytical steady state solution [1]
is obtained at Vsd = 0 for a rectangular barrier expressing
the electron and hole wavefunctions via combinations of plane
waves. Matching the continuous boundary conditions one
finds [1–4] the tunneling amplitude t2GW for a normal electron
incidence (φ = 0) as

t2GW = −2k(k ′ − k)se2i(Dk′+2ϕ)

e2iDk′(k−k′ )2s ′−(k+k′ )2s ′ (4)

where the electron wavevector in the electrode is k =√
2m|E |/h̄ and inside the barrier is k ′ = √

2m(E − U0)/h̄,
ϕ is the phase drop across the graphene barrier, s ′ =
sign(U0 − E). For a classic rectangular barrier one instead
obtains

tcl = kk ′e−iDk eiϕ

kk ′ cos(Dk ′) − i
(
k2 + k ′2) sin(Dk ′)/2

. (5)

Although equations (4) and (5) are instructive, the exper-
imentally measured characteristics are relevant rather to a
finite bias voltage (Vsd �= 0) across the graphene barrier
and finite incidence angles φ �= 0. The electric field E in
the latter case penetrates inside the bilayer graphene barrier
and electrodes, forcing the charge carriers to accelerate. The
simplest electron and hole wavefunctions in that case are
represented via the Airy functions [13] rather than via plane
waves. The CF wavefunction �̂(x) is obtained from the
Dirac equation Ĥ�̂ = E�̂, where E is the electron energy.
For calculations one uses the tilted barrier potential U(x) =
−Ex[θ(−x) + θ(x − D)] + [U0 − Ex]θ(x)θ(D − x), where
E = Vsd/D is the electric field, which penetrates into the
graphene barrier. Then components of the fermion momentum
p = (h̄k, h̄q) are written as h̄q = √

2m|E | sin φ and h̄k(x) =
i
√

2m(U(x) − E) cos φ(x), φ(x) = arcsin[(q/k(x)) sin φ],
where D is the barrier thickness and φ is the electron incidence
angle in electrode 1. The corresponding trial wavefunction is

�̂ = �̂1θ(−x) + �̂2θ(D − x) + �̂3θ(x − D)

�̂1 = eiqy[λBi(ζk,x ) + b1λ̃Bi(ζk,x ) + c1λ
†Ai(ζik,x )]

�̂2 = eiqy[a2Ai(ζk′,x)μ + b2Bi(ζk′,x)μ̃

+ d2Bi(ζik′ ,x)μ
† + c2Ai(ζik′ ,x)μ

‡]
�̂3 = eiqy[a3Ai

(
ζk,x

)
ν + d3Bi

(
ζik,x

)
ν̃]

(6)

where
ζk,x = − (

k2 + Ex
)
/ (−E)2/3 (7)

k = √
2m|E | cos φ/h̄ is the electron wavevector in the

electrode and k ′ = √
2m(E − U0) cos φ′/h̄ is the electron

wavevector inside the graphene barrier. In the above formulae
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Figure 2. (a) The steady state tunneling transparency T0 versus the
electron energy E (in units of the graphene barrier height U0) and the
azimuthal angle φ (in radians). (b) The corresponding steady state
differential conductance σ0 (in units of σ̃0 = (2e2/h)π

√
2mU0)

versus the source–drain bias voltage Vsd (in units of U0/e) for three
angles of incidence φ. The sharp peaks at Vsd < U0/e, when φ �= 0,
originate from the electron–hole interference inside the barrier.

we used the following notations:

φ′ = arcsin
(
(q/k ′) sin φ

)

s1 = −1, s2 = sign (U0 − E) ,

s3 = sign (−Vsd − E)

h′ =
√

1 + sin2 φ′ − sin φ′

λ = (|↑〉 + s1e2iφ |↓〉)

λ̃ = (|↑〉 + s1e−2iφ |↓〉)

λ† = (|↑〉 + s1h1 |↓〉)

ν = (|↑〉 + s3e2iφ |↓〉)

ν̃ = (|↑〉 − s3/h3 |↓〉)

μ = (|↑〉 + s2e2iφ ′ |↓〉)

μ̃ = (|↑〉 + s2e−2iφ ′ |↓〉)

μ† = (|↑〉 − s2/h2 |↓〉)

μ‡ = (|↑〉 − s2h2 |↓〉).

In the above equations we introduced auxiliary matrices
|↑〉T = (

1 0
)

and |↓〉T = (
0 1

)
(where T means

transpose). The chiral tunneling is pronounced at finite
incidence angles φ �= 0 and at energies E < U0 below
the barrier. The steady state tunneling probability T0 of a
normally incident chiral particle vanishes below the barrier
(E < U0) while it is finite above the barrier (when E � U0).
In figure 2(a) we plot T0 versus the energy E of an electron
incident on the barrier under the angle φ. In figure 2(b)
we show the steady state tunneling differential conductance
σ0(Vsd) for different incidence angles φ. Both the plots in
figures 2(a) and (b) are related to U0 = 2 meV, which

3
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corresponds to the surface charge density n = 1011 cm−2

induced by the gate voltage VG = 1 V across the SiO2 substrate
with thickness d = 300 nm (see figures 1(c) and (d)).

3. Directional photoelectric current

The steady state characteristics of the dc biased graphene
junction described above allow study of the external ac
field influence on the graphene junction. We find that
a most spectacular phenomenon occurs when the ac gate
voltage VG(t) modulates the height U of the graphene
barrier U → U0 + U1 cos �t , where � is the ac field
frequency. Then the x̂ component of the electron momentum
h̄kB = √

2m(U0 − E) cos φ′ inside the barrier becomes time-
dependent kB → kB + κ(t) which, at κ(t) � kB, gives κ(t) =
(U1/2kB) cos �t + (U 2

1 /8k3
B) cos2 �t + O(U1). We emphasize

that a mere factorization [5] of the electron wavefunction
�̂(x, t) like �̂(x, t) → �̂(x)

∑
k Jk(α) exp (in�t) (where

α = eU1/(h̄�)) does not work here since it does not
properly incorporate the non-stationary behavior of �̂(x, t).
The puzzle comes from a non-analytical dependence of �̂(x, t)
on κ(t). Therefore one should obtain a valid �̂(x, t)
from corresponding non-stationary boundary conditions at
the electrode/barrier interfaces. This gives a complex non-
stationary and nonlinear behavior of �̂(x, t), from which one
computes the observable characteristics of interest. The ac-
field-induced time dependence κ(t) yields two spectacular
consequences. First, the ac field splits the sharp resonance in
the energy-dependent transmission probability T (E) at E =
E0 as E0 → E0 ± n�, where n is the number of photons
absorbed during the chiral tunneling process. And, second, the
ac field strongly affects the angular dependence of the chiral
tunneling since it renormalizes the angle φ′ between q and
kB(t) inside the barrier as

φ′ = arcsin
[ (

q·k−1
B (t)

t)
sin φ

]
. (8)

In order to compute the time-dependent electric current one
solves the non-stationary boundary conditions. In this way one
finds the transmission coefficient tE (t). Analytical expressions
for tE (t) are obtained in a simplest case U0 = 0 (no graphene
barrier when the ac field is off). After the ac field is on, it
induces an oscillating potential barrier U(t) = U1 cos �t via
an ac gate voltage VG(t) = V (0)

G cos �t . Assuming a normal
incidence (φ = 0) and setting U0 = 0, k2 = k1 + κ1, where κ1

is time-dependent, one gets

tE<U0 (φ = 0)

= 4ik1k+ (cosh Dκ− + sinh Dκ−)

4ik1k+ cosh Dk+ + 2k2
1 sinh Dk+ − 2k2+ sinh Dk+

(9)

where κ− = κ1 − ik1, k+ = k1 + κ1. Equation (9) corresponds
to a set-up where the graphene barrier is induced purely by the
ac gate voltage. In the limit of small external ac field (κ1 � k1)
from equation (9) one obtains

tE<U0 (φ = 0) = 2K1 + 2(Dk1 + i)(1 − e2k1 )

· K2� + (D2e4Dk1 k2
1 + D2k2

1 − 12iDe2Dk1 k1

− 6D2e2Dk1 k2
1 + 2iDe4Dk1 k1 + 2iDk1

+ 4e2Dk1 − (2 + i) − (2 − i)e4Dk1 )K3�
2 + O(κ3

1 ) (10)

where � = κ1(t)/k1 and we introduced the auxiliary function
Kp = e(1−i)Dk1 /(1 + e2Dk1 )p. The transmission resonances
correspond to a vanishing denominator (1 + e2Dk1 )p = 0, p =
1 . . . 3. The Fourier transform of the above equation shows
that the ac field splits the kth chiral tunneling resonance as
Ek → Ek ± nh̄�, where n is the number of photons absorbed
(emitted) during the tunneling. One can see that the external
field not only splits the resonances, but also strongly affects
angular dependence of the chiral tunneling. That happens
because the ac field causes no influence on the ŷ component
of the electron momentum q since the graphene barrier is
effectively one-dimensional. The time dependence κ1(t) also
takes place when the ac field modulates the graphene barrier
width as D → D0+D1 cos �t . Splitting of the chiral tunneling
resonances and the angular redistribution of the electric current
under the ac field influence is better pronounced for a finite
barrier height U0 �= 0 and U = U0 + U1 cos �t . From
equation (8) one can see that φ′ = 0 if φ = 0. However, if φ �=
0, one may observe a spectacular phenomena. In this case an
external ac field induces a finite electric current for an almost
normal incidence φ ≈ 0, which was inhibited when the field
was off. When φ ≈ 0, the ac field actually causes additional
photon-assisted chiral tunneling resonances to engage. The
directional photoelectric effect (DPE) may be realized in two
scenarios. One scenario assumes that an electron beam having
a finite angular width δφ �= 0 enters the graphene barrier
normally. A visible DPE can be achieved in the set-up shown
in figure 4(b) where the attached electrodes 1 and 3 are made
of one-dimensional conducting wires. If the wire is much
narrower than the width of the graphene stripe (Ww � W ), one
may consider the electric current as a result of one-dimensional
propagation of an electron along the trajectories under the
influence of the bias voltage. Such a method formerly had
intensively been used in numerous works devoted to point
contact junctions [14, 15]. If the electric current is sufficiently
weak, the electrons coming from the wire into the graphene
stripe introduce a negligible disturbance into the electron
spectrum inside the graphene. The translational invariance
inside graphene is well preserved [16]. The authors of [16]
used the STM tip for imaging the electron wavefunction in
carbon nanotubes which showed a periodic pattern. Electrode
1 emits electrons under a small but finite angle φ (φ � π , φ �=
0) whose trajectories are focused/defocused by the external
electromagnetic field as indicated in figure 4(b). The frequency
dependence of the transparency is governed by the directional
photoelectric effect. A significant directional photoelectric
effect emerges even for a relatively long wavelength λ �
1 mm–0.01 μm (which corresponds to the THz domain) if the
condition |E − U0 ∓ �| � |E | is met. The deviation angle
φ′ = arcsin[√|E |/|E − U0 ∓ �| sin φ] inside the graphene
barrier considerably increases, giving φ′  φ. This means
that an ideal transparency taking place in the steady state at
φ �= 0 is redistributed over the angle φ′ after the ac field
is applied. The transparency peaks are actually shifted from
finite angles φ �= 0 to the normal incidence angle φ = 0.
Another scenario involves an incident single electron which
enters the graphene barrier strictly normally (φ = 0) under
the influence of a high frequency THz wave. In this scenario

4
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Figure 3. Limit of a low ac field amplitude. Photoelectric effect in
the bilayer graphene junction induced by an external electromagnetic
field. Modulation of the graphene barrier height by the ac field
polarized along x̂ (a) and ẑ (b) axes. The dashed–dotted lines in
(a) and (b) show deviations of the chiral barrier U(x) from its steady
state shape under influence of the ac field Vac. (c) Corresponding
steady state σ0 and the photon-assisted chiral tunneling differential
σ1 = σ t − σ0 conductances (same units as in figure 2(b)) in the
longitudinal direction φ = 0. Curve F shows the Fano factor F ,
which characterizes the Poisson noise. (c) The dc conductance for
x̂ and ẑ field polarizations. One may notice that the ac field induces
sharp resonant peaks in the photon-assisted chiral tunneling
conductance σ1.

an electron absorbs a THz photon having the finite energy
E� and momentum q along the y axis. Then the electron
deviation angle δφ just before entering the barrier is small,
δφ � π . For instance, taking ν = 30 THz (which corresponds
to the photon energy E� = 125 × 10−3 eV) one gets δφ ≈
q/k = 2 × 10−3. The photoelectric effect is well pronounced
for an electron with energy Ee � 2 × 10−3 eV after it gets
inside the graphene barrier. There, if |E − U0 ∓ �| � |E |
the deviation angle φ′ = arcsin [√|E |/|E − U0 ∓ �| sin φ]
increases considerably, since the photon energy is pretty high,
E�/Ee � 50, E� = 0.1 eV. Practically this means that one
must set h̄� � U0 to get a strong photoelectric effect. In the
above example the last condition also supposes that one should
use U0 ≈ E� = 125 meV. Below we consider the two most
important field polarizations along the x̂ and ẑ axes as shown
in figures 3(a) and (b). The barrier transparency T (E, φ) is
affected by the ac field directly in either case. In particular, the
barrier shape is modulated by the ac field polarized along the x
direction as sketched in figure 3(a), since E → E0+E1 cos(�t).
On the other hand, if one applies an ac field polarized as
E = (0, 0, Ez), it modulates the barrier height since VG →
V (0)

G + V (1)

G cos(�t) (V (0)

G is the steady state gate voltage and
V (1)

G is the ac-field-induced addition, see sketch in figure 3(b)).
Then the ac-field-induced correction to the dc tunneling current
is j1 = 2e

∫
dε χε|δt (1)

ε,�|2(2nε − nε+�−eV − nε−�−eV ),
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Figure 4. The time-averaged differential conductance σ(t)
t

(in units
of σ̃0 = (2e2/h)π

√
2mU0) of a bilayer graphene junction exposed to

an external electromagnetic field which modulates the barrier height
U(t) = U0 + U1 cos �t . In figure (c) one may notice a remarkably
strong DPE at �/U0 � 1. This corresponds to curve 1 in figure (d)
where the peak spacing �k is determined by the graphene barrier
length D.

where the transmission amplitude t (1)
ε,� is obtained from the

corresponding non-stationary boundary conditions at x =
0 and D. Physically, the directional photoelectric effect
(DPE) comes from an ingenious influence of the external
electromagnetic field on the electron–hole phase correlations
during the chiral tunneling. Technically, modulation of the
barrier height by the ac field shifts positions of the sharp
peaks in the energy-dependent barrier transparency T (ε ± �).
Besides, it also modifies the overall angular distribution of the
electric current, so the electron–hole conversions occur with
an additional phase shift. Numerical results for both cases
are presented in figures 3(c) and (d). Corresponding plots
for the steady state differential conductance σ0(Vsd) and for
the photon-assisted chiral tunneling conductance σ1(Vsd) =
∂ j1/∂Vsd = σ t − σ0 both indicate the angular redistribution
of the photon-assisted chiral tunneling current across the
graphene barrier. The steady state conductance curve σ0 in
figure 3(c) corresponds to U0 = 2 meV while curve σ1 is
computed for VG = 1 V and � = 1 THz. The DPE
is well illustrated by the sharp scattering resonance taking
place in σ1(Vsd) (see the crisp peak at the incidence angle
φ = π/16 and at the bias voltage Vsd = U0 = 0.5 in
figure 3 (c)). When the ac field is off, the steady state
tunneling at V0 = 0.5 in the straightforward direction is
suppressed (see the corresponding curve σ0(Vsd) for φ =
0). However, if one applies the ac field with frequency
� and E = (Ex, 0, 0), it opens tunneling channels in the
straightforward direction φ = 0, as is evident from curve
σ1 in figures 3(c). In figure 3(d) we compare two time-
averaged conductance curves σ1(Vsd) under the influence of
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the ac field with two different polarizations along the x̂ (curve
X) and ẑ (curve Z) axes correspondingly. In either case the
σ1(Vsd) curves show remarkable sharp peaks, whose position,
however, changes versus the field polarization. Although the
above results are illustrative, they focus solely on the limit
of a weak electromagnetic field U1 � U0. Influence of an
external electromagnetic field of arbitrary amplitude on the ac
transport properties of a bilayer graphene junction had been
studied in this work using a numerical approach. We solved the
non-stationary boundary conditions using the trial function (6)
where we take E → E0 + E1 cos(�t) with an arbitrary
ratio E1/E0. We emphasize again that a mere multiphoton
approximation like that used in [5] is not working in this
case. The graphene barrier transparency now is not assumed
to be small, therefore the electron wavefunction cannot be
simply factorized as �̂(x, t) → �̂(x)

∑
k Jk(α) exp (ik�t).

Therefore we use a straightforward numerical solution of the
non-stationary boundary conditions for �̂(x, t) and compute
the time-dependent transmission probability T (t) directly from
that solution. Then we apply a fast Fourier transform algorithm
for computing T (ω) numerically versus the external field
frequency � and the ac barrier amplitude U1. The obtained
results for the differential conductance under the influence
of a strong electromagnetic field with �/U0 = 0.75 are
presented in figure 4. In figure 4(a) we show the time-averaged
conductance σ = σ(t)

t
of the bilayer graphene junction for

the normal electron incidence φ = 0 and for different ac
field amplitudes U1 = 0.01 (curve A), U1 = 0.1 (curve B),
U1 = 0.4 (curve C) and U1 = 1.3 (curve D). One can
see that, if the external field amplitude U1 is lower than the
graphene barrier height U1 < U0 (which corresponds to curves
A–C), the junction’s conductance has a threshold character
versus the bias voltage Vsd. If, however, U1 > U0, a finite
transparency takes place even at Vsd < U0, which corresponds
to curve D. From the three-dimensional plot T0(ε,�) shown in
figure 4(c) one can see that a visible transparency is achieved at
frequencies �/U0 ≈ 1, which is well consistent with the semi-
qualitative consideration above. A more accurate estimation of
the DPE magnitude follows from figure 4(d) where we plot
σ(Vsd) for three different frequencies �/U0 = 1 (curve 1),
�/U0 = 0.1 (curve 2) and �/U0 = 2 (curve 3). The
peaks of finite σ in curves 1–3 at Ek < U0 are present
because the electron incidence angle φ is finite though small
(φ = π/20). The peak increase of the junction’s conductance
σ(V (k)

sd ) is achieved at selected bias voltage values V (k)
sd <

U0/e and �/U0 ≈ 1, which corresponds to curve 1. One
can see that the directional photoelectric effect increases the
junction conductance σ(V (k)

sd ) at �/U0 ≈ 1 by a few orders
of magnitude as compared to its steady state value at the
same V (k)

sd . The relevant increase of the conductance is,
however, less significant at other ac field frequencies, i.e.
�/U0 = 0.1 (curve 2) and �/U0 = 2 (curve 3). In
figures 5(a) and (b) we show contour plots of the time-averaged
conductance σ(t)

t
of a bilayer graphene junction versus the

electron incidence angle φ and the source–drain bias voltage
Vsd for two different ac field frequencies (a) �/U0 � 0.1 and
(b) �/U0 � 1. The conductance diagrams in either case have
pretty spectacular complex structures where the dark spots

Vsd

φ

0.5 1 1.5 2

0.2

0.4

0.6

Ω =0.1
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0.5 1 1.5 2
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0.4

0.6

Ω =1

(b)

D
PE

(a)

Figure 5. Contour plots of the time-averaged differential
conductance σ(t)

t
(in units of σ̃0) of a bilayer graphene junction

versus Vsd and φ at two different ac field frequencies (a) �/U0 � 0.1
and (b) �/U0 � 1.

correspond to σ t � σ̃0. When the external field frequency
� is low (i.e. �/U0 = 0.1, as shown in figure 5(a)), the
tunneling for the incident electron energies E/U0 < 0.55 is
fully blocked. However, when the field frequency becomes
higher, i.e. �/U0 = 1, as indicated in figure 5(b), one may
notice a series of sharp dark spots at discrete energies Ek below
the barrier (Ek < U0) pronounced at the normal incidence
angle φ = 0. Those dark spots constitute the directional
photoelectric effect discussed above and indicated as DPE in
figure 5(b).

Intrinsic noise in the bilayer graphene junction originates
as follows. The thermal noise comes from phonons emitted
in the electron–phonon collisions. The matrix element of the
electron–phonon collisions according to [17, 18] is Mpp′ ∝
〈p|M(x)|p′〉 cos(φpp′), where φpp′ is the angle between initial
and final states. The phase factor cos φpp′ plays quite a
different role in the bilayer graphene compared to the single-
layer graphene [17] where it is rather cos(φpp′/2) instead. In
the latter case, the factor ensures suppression of the electron–
phonon and electron–impurity collisions and the transport of
the change carriers remains ballistic up to room temperatures.
In contrast, thermal noise in the bilayer graphene devices
is rather high at room temperature. Another intrinsic noise
(Poisson noise) arises due to the ‘Zitterbewegung’ effect,
which is linked to a jittering motion of the change carriers when
electrons are randomly converted back and forth to holes. That
produces noise even in the zero temperature limit. The noise is
characterized by the Fano factor F = ∑

n Tn(1 − Tn)/
∑

n Tn ,
where Tn is the tunneling probability in the nth channel and
the summation is performed over all the conducting channels
(in our set-up this means just integration over φ). From
the plot F(Vsd) shown in figure 3(d) for D = 15 (in units
of h/

√
2mU0) one infers that the Poisson noise becomes

extremally low at Vsd � U0.

4. Conclusions

In conclusion we computed the electric current across the
bilayer graphene junction in conditions when an external
electromagnetic field is applied. We have found that the
threshold absorption of the external electromagnetic field
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strongly depends on the ac field frequency and amplitude.
The electromagnetic field induces an ideal transparency of the
graphene barrier in the longitudinal direction, which had been
fully suppressed when the ac field was off. That directional
photoelectric effect originates from an angular redistribution
of the whole transparency diagram since the sidebands at
finite angles are redirected to the normal incidence. An
experimental observation of such a spectacular directional
optoelectric phenomena would provide strong evidence for the
existence of massive chiral fermions in the bilayer graphene.
We emphasize that the threshold absorption emerges purely
from a quantum mechanical phase shift, and not from an
inelastic excitation by the ac field. That means no heating
is involved during the absorption. The ac current induced
by the electromagnetic field across the graphene junction
has a sharp angular dependence, which potentially can be
exploited in sensor nanodevices of the external electromagnetic
field. The directional photoelectric effect in the double-layer
graphene junctions is a unique phenomenon which exists in
that system and had not been noticed in other systems, like
junctions composed of single-layer graphene or of normal
metals. The most intriguing feature is the switch between zero
and finite conductance occurring without energy absorption.
The phenomena considered above have a great potential for
various nanoelectronic applications.
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